Multiplicative Principal-minor Inequalities for a Class of Oscillatory Matrices
نویسندگان
چکیده
A square matrix is said to be totally nonnegative (respectively, positive) if all of its minors are nonnegative (respectively, positive). Determinantal inequalities have been a popular and important subject, especially for positivity classes of matrices such as: positive semidefinite matrices, M−matrices, and totally nonnegative matrices. Our main interest lies in characterizing all of the inequalities that exist among products of both principal and non-principal minors of certain subclasses of invertible totally nonnegative matrices. This description is accomplished by providing a complete list of associated multiplicative generators.
منابع مشابه
Further inequalities for operator space numerical radius on 2*2 operator matrices
We present some inequalities for operator space numerical radius of $2times 2$ block matrices on the matrix space $mathcal{M}_n(X)$, when $X$ is a numerical radius operator space. These inequalities contain some upper and lower bounds for operator space numerical radius.
متن کاملSome Integral Inequalities of Hermite-Hadamard Type for Multiplicatively s-Preinvex Functions
In this paper, we establish integral inequalities of Hermite-Hadamard type for multiplicativelys-preinvex functions. We also obtain some new inequalities involving multiplicative integralsby using some properties of multiplicatively s-preinvex and preinvex functions.
متن کاملSOLUTION-SET INVARIANT MATRICES AND VECTORS IN FUZZY RELATION INEQUALITIES BASED ON MAX-AGGREGATION FUNCTION COMPOSITION
Fuzzy relation inequalities based on max-F composition are discussed, where F is a binary aggregation on [0,1]. For a fixed fuzzy relation inequalities system $ A circ^{F}textbf{x}leqtextbf{b}$, we characterize all matrices $ A^{'} $ For which the solution set of the system $ A^{' } circ^{F}textbf{x}leqtextbf{b}$ is the same as the original solution set. Similarly, for a fixed matrix $ A $, the...
متن کاملInterlacing Inequalities for Totally Nonnegative Matrices
Suppose λ1 ≥ · · · ≥ λn ≥ 0 are the eigenvalues of an n × n totally nonnegative matrix, and λ̃1 ≥ · · · ≥ λ̃k are the eigenvalues of a k × k principal submatrix. A short proof is given of the interlacing inequalities: λi ≥ λ̃i ≥ λi+n−k, i = 1, . . . , k. It is shown that if k = 1, 2, n− 2, n− 1, λi and λ̃j are nonnegative numbers satisfying the above inequalities, then there exists a totally nonneg...
متن کاملSingular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کامل